翻訳と辞書
Words near each other
・ Cartagogena filtrata
・ Cartajima
・ Cartal River
・ Cartaletis gracilis
・ Cartamundi
・ Cartan
・ Cartan (crater)
・ Cartan connection
・ Cartan decomposition
・ Cartan formalism (physics)
・ Cartan matrix
・ Cartan model
・ Cartan pair
・ Cartan subalgebra
・ Cartan subgroup
Cartan's criterion
・ Cartan's equivalence method
・ Cartan's lemma
・ Cartan's lemma (potential theory)
・ Cartan's theorem
・ Cartan's theorems A and B
・ Cartanal
・ Cartanul River
・ Cartan–Brauer–Hua theorem
・ Cartan–Dieudonné theorem
・ Cartan–Eilenberg resolution
・ Cartan–Hadamard theorem
・ Cartan–Karlhede algorithm
・ Cartan–Kuranishi prolongation theorem
・ Cartan–Kähler theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cartan's criterion : ウィキペディア英語版
Cartan's criterion
In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on \mathfrak defined by the formula
: K(u,v)=\operatorname(\operatorname(u)\operatorname(v)),
where tr denotes the trace of a linear operator. The criterion was introduced by .〔Cartan, Chapitre IV, Théorème 1〕
== Cartan's criterion for solvability ==

Cartan's criterion for solvability states:
:''A Lie subalgebra \mathfrak of endomorphisms of a finite-dimensional vector space over a field of characteristic zero is solvable if and only if Tr(ab)=0 whenever a\in\mathfrak,b\in().''
The fact that Tr(ab)=0 in the solvable case follows immediately from Lie's theorem that solvable Lie algebras in characteristic 0 can be put in upper triangular form.
Applying Cartan's criterion to the adjoint representation gives:
:''A finite-dimensional Lie algebra \mathfrak over a field of characteristic zero is solvable if and only if K(\mathfrak,())=0 (where K is the Killing form).''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cartan's criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.